A biomimetic, phosphatidylcholine- terminated monolayer greatly improves the in-vivo performance of electrochemical aptamer-based sensors

Abstract

The real-time monitoring of specific analytes in situ in the living body would greatly advance our understanding of physiology and the development of personalized medicine. Because they are continuous (wash-free and reagentless) and are able to work in complex media (e.g., undiluted serum), electrochemical aptamer-based (E-AB) sensors are promising candidates to fill this role. E-AB sensors suffer, however, from often-severe baseline drift when deployed in undiluted whole blood either in vitro or in vivo. We demonstrate that cell-membrane-mimicking phosphatidylcholine (PC)-terminated monolayers improve the performance of E-AB sensors, reducing the baseline drift from around 70 % to just a few percent after several hours in flowing whole blood in vitro. With this improvement comes the ability to deploy E-AB sensors directly in situ in the veins of live animals, achieving micromolar precision over many hours without the use of physical barriers or active drift-correction algorithms.

ICB Affiliated Authors

Authors
Li, H., Dauphin-Ducharme, P., Arroyo-Currás, N., Tran, C., Vieira, P.A., Li, S., Shin, C., Somerson, J., Kippin, T.E. and Plaxco, K.W.
Date
Type
Peer-Reviewed Article
Journal
Angewandte Chemie, International Edition
Volume
56
Pages
7492–7495
Emblems