Exploiting the conformational-selection mechanism to control the response kinetics of a “smart” DNA hydrogel
Abstract
The sequence-specific hybridization and molecular recognition properties of DNA support the construction of stimulus-responsive hydrogels with precisely controlled crosslink geometry. Here we show that, as predicted by the conformational selection mechanism, the response kinetics of such a hydrogel can be tuned over orders of magnitude by modulating the thermodynamic stability of its crosslinks.